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Cyanobacterial blooms pose one of the most serious threats to freshwater ecosystems
Tanhingn, T ny producing toxic secondary metabolites that can poison aquatic fpod-wcbs, pets,
R livestock, and humans. Consequently, water resource managers routinely employ a
en fish and variety of strategies aimed at controlling blooms of cyanobacteria, including reducing
putrient inputs, using potent herbicides, disrupting stratification, and shading waterbodies
7. ' with water-based stains. The role of ecology in cyanobacterial bloom management is
tio, 1989 80, poorly understood despite a decades-long history of studies using biomanipulation: the

manipulation of higher trophic levels (adding piscivores or removing planktivores) 0

s. Ecological increase the size, abund:ance, zlmd gl:a:f,ing pressure of herbiv_orou_s zef)oplankton to reduce
algal abundance. Past biomanipulation efforts conducted primarily in temperate systems
have provided equivocal results, and the presence of the generalist herbivore, Daphnia,
seems to be critically important to the success of biomanipulation efforts.

While cyanobacteria are relatively poor quality food for planktonic herbivores
including cladocerans, copepods, and rotifers, recent meta-analyses of zooplankton-
cyanobacteria studies show that, in general, cyanobacteria can support positive
zooplankton population growth and purportedly toxic cyanobacterial secondary
metabolites have, if any, ambiguous effects on zooplankton. Furthermore, recent research
has shown that freshwater zooplankton, including the cladoceran Daphnia and the
calanoid copepod Eudiaptomus, can adapt to tolerate toxic cyanobacteria in the diet
following prolonged exposurc to cyanobacterial blooms. Related field experiments
clearly show that Daphnia can control cyanobacteria when freed from fish predation. In
this review, we argue that cyanobacteria may serve as d beneficial food resource for
zooplankton, that ecological control of cyanobacterial blooms is practical for some
systems, and that greater attention should be placed on direct biomanipulation of
zooplankton communities (e.g., stocking Daphnia) in conjunction with the manipulation
of higher trophic levels. We also highlight the need for more data documenting
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zooplankton-cyanobacteria interactions in tropical freshwater ecosystems, whose
biological, chemical, physical, and geological characteristics vary remarkably from their
temperale counterparts.

COMMENTARY

Biomanipulation — the alteration of a food-web to restore ecosystem health — has been
well-studied in disparate communities [1,2] since the concept was first introduced by Joseph
Shapiro and his colleagues as an approach to manage nutrient-rich freshwater lakes [3]. In
lakes, the basic premise of biomanipulation is that secondary consumers (planktivorous
fishes) are removed either through the addition of tertiary consumers (piscivorous fishes) or
harvesting, which allows for the dominance of large-bodied, generalist zooplankton grazers
(e.g., Daphnia) [4] to control phytoplankton. When planktivorous fishes are abundant and
there is no predation refuge (e.g., oxygenated hypolimnion) for large-bodied zooplankton,
less efficient small-bodied zooplankton grazers (e.g., rotifers and herbivorous copepods)
typically dominate zooplankton communities thus allowing for the overgrowth of
phytoplankton (i.e., algal bloom). Many past studies, conducted primarily in temperate
systems, have shown strong correlations between the size structure of zooplankton
communities and phytoplankton abundance [5-9]. These data support the notion that
predatory top-down forces can have important implications for aquatic communities and
ecosystems [10,11]. With that said, fish-centric biomanipulation effects on water quality are
typically short-lived (i.e., weeks to months), most obvious in small, easily-managed systems
(i.e., ponds), and impacted by resource availability, namely phosphorus and nitrogen [12-15].
For example, a common consequence of excess nutrient loading in lakes is elevated primary
production [16] and the promotion of algal blooms [17,18]. Given the complexity of algal
‘bloom dynamics across space and time, we still know very little regarding the relative
strengths of top-down (predation) and bottom-up (resources) forces regulating ecosystem
function in aquatic systems (but see [19,20]). This is especially true for under-studied
subtropical and tropical systems [21-23].

Cyanobacteria (blue-green algae) are one of the primary indicators of poor water qual ity
in lentic systems and have been implicated in the sickness and death of pets, livestock, and
humans [24,25]. Cyanobacteria tend to dominate algal communities under nutrient
enrichment, low nitrogen-to-phosphorus ratios, elevated temperatures, periods of stagnant or
stratified conditions, high zooplanktivory, or a combination of these factors [17,26-31].
Regarding food-web interactions, cyanobacteria are considered to be poor food for grazers
relative to other algal taxa, such as flagellates and chlorophytes [32,33]. Mechanisms
mediating this distinction include the lack of cyanobacterial fatty acids required by
zooplankton, colonial and filamentous morphologies, and intracellular toxins produced by
several cyanobacterial genera that may negatively affect zooplankton population
growth [33-37].

Of these three primary mechanisms, the role of nutritional deficiencies has shown to be
the most robust across studies. For example, von Elert and colleagues [36,38-40] have
conducted numerous laboratory-based experiments showing that zooplankton somatic and
population growth rates can be enhanced when fed cyanobacterial diets supplemented with
lipophilic chemical constituents, such as sterols and poly-unsaturated fatty acids, produced by
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some algal taxa (chlorophytes and cryptophytes). Intuitively, large and irregularly-shaped
cyanobacterial growth forms (e.g., Microcystis colonies or Anabaena filaments) should deter
grazing by gape-limited zooplankton. However, a recent quantitative literature review of
laboratory-based studies showed that filamentous cyanobacteria comprised significantly
better diets for freshwater zooplankton relative to diets consisting of single-celled or colonial
cyanobacteria [33]. Findings from this meta-analysis may be influenced by the inability of
some zooplankton to consume large filaments, thus not ingesting purported intracellular
toxins or cyanobacteria lacking essential nutrients. Future experiments should consider using
different size fractions of the same phytoplankton diet (i.e., strain) to tease apart the influence
of algal size on food quality for zooplankton (see [41,42]). Such an approach would preclude
confounding factors related to intra- and interspecific physiological variation in
phytoplankton [32,33].

The role of intracellular cyanobacterial secondary metabolites as zooplankton toxins is
ambiguous, at best, despite the large zooplankton-cyanobacteria literature. In the same meta-
analysis described above, Wilson and colleagues [33] found no clear effects of “toxic”
cyanobacteria (defined as cyanobacterial strains shown to produce known toxins, such as
microcystin or anatoxin-a) on the population growth rates of freshwater cladocerans and
rotifers. In other words, zooplankton performed similarly on diets containing toxic or non-
toxic cyanobacteria, albeit still worse relative to higher quality diets lacking cyanobacteria.
Given that cyanobacteria produce a diverse suite of known and unknown compounds [43,44],
it is reasonable to consider that “non-toxic” cyanobacteria (defined as cyanobacterial strains
that do not produce known toxins) could produce “toxic” secondary metabolites that are
currently unknown. Alternatively, cyanobacterial toxins traditionally identified using
bioassays involving rodents may not be toxic to zooplankton. We are aware of only one study
which directly tested the effect of one cyanobacterial toxin, microcystin-LR, in the diet on the
fitness of a zooplankter, Daphnia pulicaria [37]. Data from this study showed that
microcystin-LR can be toxic to zooplankton, but that this effect is not universal. For example,
‘one D. pulicaria clone isolated from a eutrophic lake that was previously shown to perform
well on a diet containing live, toxic Microcystis exhibited negative population growth when
fed a diet containing lyophilized Chlorella (chlorophyte) treated with microcystin-LR.
Interestingly, another D. pulicaria clone collected from an oligotrophic lake that performed
poorly on the same diet containing live Microcystis was not affected by microcystin-treated,
freeze-dried Chlorella. It is unclear what mechanism is driving these patterns, but these data
definitely show that Daphnia performance on toxin-laced diets were consumer genotype-
dependent, albeit not as expected based on their source habitats. Finally, although
cyanobacteria are relatively poor food for zooplankton [33], it is imperative to recognize that
most zooplankton taxa exhibit positive population growth on diets containing part or all
cyanobacteria, regardless of its toxicity or morphology [32], and that the effects of
cyanobacteria on zooplankton are likely context specific. Together, these data strongly
suggest that the current paradigm describing cyanobacteria as generally harmful to
zooplankton may need to be reconsidered.

During cyanobacterial blooms, small-bodied zooplankton tend to dominate plankton
communities, and past observational studies have attributed this pattern to anti-herbivore
traits of cyanobacteria [35,45,46]. However, planktivorous fish biomass is often positively
related to productivity [6]. Thus, alternative explanations for the lack of consumer control of
cyanobacteria could include zooplanktivory [47] or synergistic effects of cyanobacterial traits
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and consumer control of large-bodied zooplankton [28]. We are unaware of any field
empirical tests that have directly studied these hypotheses. Moreover, given that most
zooplankton-cyanobacteria studies have been conducted in the laboratory but that the focus of
these studies is on dynamics in nature, we encourage a greater emphasis of studies that
determine if interactions observed in the laboratory can be extended to the field (see [48]).

Despite strong, but variable, inhibition of Daphnia by cyanobacteria in the laboratory,
repeated field observations in eutrophic lakes have documented strong suppression of
phytoplankton, including cyanobacteria, by Daphnia when freed from predation by
planktivorous fishes [19,49-52]. Moreover, we have conducted several field experiments of 2-
3 months duration (fish-less 144 L enclosures; without or with Daphnia) in hypereutrophic
aquaculture ponds dominated by various species of cyanobacteria and found consistent, large
effects of Daphnia on algal abundance (Figure 1, M. Chislock and A. Wilson, unpublished
data). One potential explanation for the incongruity between results generated from laboratory
and field studies is that laboratory experiments sometimes use Daphnia genotypes that are
evolutionarily naive to toxic cyanobacteria or incorporate diets consisting of cyanobacterial
genotypes that are especially toxic prey [32,33]. Recent laboratory experiments support this
explanation, as Daphnia genotypes from eutrophic environments with frequent cyanobacterial
blooms are less inhibited by microcystin-producing Microcystis than Daphnia from
oligotrophic environments where cyanobacteria are rare [53,54].

Furthermore, phenotypic acclimation has been observed in Daphnia [55], as well as the
calanoid copepod Eudiaptomus gracilis [56], in response to exposure to sublethal diets of
cyanobacteria. Given that some zooplankton can rapidly adapt to tolerate cyanobacteria and
their associated toxins, the response of eutrophied systems to abatement efforts may depend
not only on the presence of large zooplankton, like Daphnia, but also on the role of
zooplankton adaptation to cyanobacteria. Available empirical data show that Daphnia can
suppress cyanobacteria in nature, and Daphnia adaptations to toxic cyanobacteria may
mediate these interactions. The role of grazer adaptations to better tolerate or avoid harmful
prey is under-studied [53-56] but very exciting and could explain some of the variability
observed in the zooplankton-cyanobacteria literature [32,33].

While the use of biomanipulation to improve water quality has been well-studied in
temperate systems, the potential for top-down control of phytoplankton in subtropical and
tropical lakes is less studied (but see [21-23,57]).

Elevated planktivory and temperatures occurring over increased seasonal durations in the
tropics can promote cyanobacterial blooms and can extirpate large, competitively superior
zooplankton, such as Daphnia from lakes [6,28]. It is well-known that species diversity,
consumer density, and per capita consumer effects often increase closer to the equator [58-
60]. Subtropical and tropical lakes also have more diverse fish communities that are
commonly dominated by omnivorous species that consume detritus, phytoplankton, in
addition to zooplankton [57].

Consequently, tropical and subtropical communities may be more strongly regulated by
complex, web-like species interactions, relative to the chain-like food webs of most temperate
lakes [61]. Thus, trophic cascades often documented in temperate lakes may be less common
in the tropics. However, this hypothesis is untested, and manipulative field experiments in the
tropics are needed to examine the generality of biomanipulation as a tool to improve walter
quality across systems.
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Figure 1. Legend: Histogram of algal response factors (ARF [20]; measured as [(final chlorophyll
concentration in control)/(final chlorophyll concentration in treatment)]) in 2-3 months-long field
experiments with two treatments (control = no Daphnia; treatment = Daphnia) conducted in
hypereutrophic aquaculture ponds dominated by cyanobacteria (M. Chislock and A. Wilson,
unpublished data). An ARF = 1 denotes no difference between final chlorophyll concentrations in the
control and treatment, An ARF > 1 shows that the presence of Daphnia reduces chlorophyll
concentration relative to enclosures lacking Daphnia (i.e., control).

Given the influence that predicted climate change and human population growth will
have on future water quality and quantity, there is an immediate need by water resource
managers to understand how to minimize the intensity and frequency of algal and
cyanobacterial blooms. We contend that existing data support the notions that cyanobacteria
are not necessarily harmful to zooplankton, that ecological control of cyanobacteria is
possible under certain circumstances, and that a more directed focus on the management of
large-bodied zooplankton (e.g., Daphnia) adapted to cyanobacteria could provide a long-term,
sustainable solution to future cyanobacterial blooms in freshwater lakes that contain low
densities of planktivorous fishes, We encourage large-scale, field tests of these ideas in the

future.
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