Knoll, L. B., O. Sarnelle, S. K. Hamilton, C. E. H. Kissman, A. E. Wilson, J. B. Rose, and M. R. Morgan. 2008. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes. Canadian Journal of Fisheries and Aquatic Sciences 65(3):448-455.

Abstract

We investigated whether concentrations of the cyanobacterial toxin microcystin were positively associated with Dreissena polymorpha invasion by conducting surveys of 39 inland lakes in southern Michigan with low to moderate total phosphorus concentrations (≤20 μg·L-1). Lakes with D. polymorpha had 3.3 times higher microcystin concentrations and 3.6 times higher biomass of Microcystis aeruginosa (a major producer of microcystin) than comparable lakes without D. polymorpha. In contrast, the biomass of Anabaena spp. (another potential producer of microcystin) was 4.6 times higher in lakes without D. polymorpha. We also conducted a large-scale enclosure manipulation of D. polymorpha density in Gull Lake, a low-nutrient lake containing D. polymorpha. The experiment revealed a positive effect of D. polymorpha on microcystin concentrations and M. aeruginosa biomass. The congruence between survey and experimental results provides strong evidence that D. polymorpha invasion causes an increase in toxin concentrations in lakes with low to moderate nutrients. An increase in M. aeruginosa biomass may negatively impact food webs and public health because microcystins are known to be toxic to aquatic and terrestrial organisms.

Link to Publication

Raikow, D. F., O. Sarnelle, A. E. Wilson, and S. K. Hamilton. 2004. Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnology and Oceanography 49(2):482-487.

Abstract

To examine the hypothesis that invasion by zebra mussels (Dreissena polymorpha) promotes phytoplankton dominance by the noxious cyanobacterium Microcystis aeruginosa, 61 Michigan lakes of varying nutrient levels that contain or lack zebra mussels were surveyed during late summer. After accounting for variation in total phosphorus (TP) concentrations, lakes with Dreissena had lower total phytoplankton biomass, as measured by chlorophyll a and algal cell biovolume. Phytoplankton biomass increased with TP in both sets of lakes, although the elevations of the relationship differed. The percentage of the total phytoplankton comprised by cyanobacteria increased with TP in lakes without Dreissena (R2 = 0.21, P = 0.025) but not in lakes with Dreissena (P = 0.79). Surprisingly, there was a positive influence of Dreissena invasion on Microcystis dominance in lakes with TP ≪ 25 µg L−1 (P 5 0.0018) but not in lakes with TP ≫ 25 µg L−1 (P = 0.86). The finding that Microcystis, a relatively grazing-resistant component of the phytoplankton, was favored by Dreissena in low- but not in high-nutrient lakes is somewhat counterintuitive, but predator-prey models make this prediction in certain cases when the cost for the prey of being consumption resistant is a low maximum population growth rate. This Dreissena-cyanobacteria interaction contradicts well-established patterns of increasing cyanobacteria with nutrient enrichment in north-temperate lakes and suggests that the monitoring and abatement of nutrient inputs to lakes may not be sufficient to predict and control cyanobacterial dominance of Dreissena-invaded lakes.

Link to Publication

Wilson, A. E. and O. Sarnelle. 2002. Relationship between zebra mussel biomass and total phosphorus in European and North American lakes. Archiv für Hydrobiologie 153(2):339-351.

Abstract

Link to Publication